

Introduction

You probably think that art and programming couldn't be more unalike, but actually they might be more similar than you think!

There are many modern artists whose main medium is code. For example: Mark Dorf, Josh Davis and Kyle McDonald.

Here are a few websites that merge together are and programming:

- Silk Interactive Generative Art (weavesilk.com)
- Dream by WOMBO

Task

- A tessellation is when a shape is repeated over and over again and fits together in a pattern without overlapping or leaving gaps.
- For this project we again will be needing the turtle graphics library again so that the shapes can be drawn.

Extension:

• Complete the tessellation by drawing the other side of the shape.

Process

This program should:

- ✓Import the python Turtle graphics Library
- ✓Control the speed fill colour and line color
 of the turtle,
- ✓Use for loops and subroutines to create the hexagonal shapes,
- ✓Apply previous knowledge of angles to help move the turtle along.

What it will look like...

Import turtle Library

Here we have imported the Turtle library which mean we can now create graphics with the code we will write.

```
#Exercise 1b - Tesselations
#Importing Turtle library
from turtle import *
#Changes the shape of the cursor
shape("turtle")
#Changes the speed of the turtle
delay(0)
```

Here we have imported the Turtle graphics library, made the shape of the cursor a turtle and changed the speed of the turtle to go faster than its default speed.

{4}

```
#Exercise 1b - Tesselations
#Importing Turtle library
from turtle import *
#Changes the shape of the cursor
shape("turtle")
#Changes the speed of the turtle
delay(0)
```


Python & Java 4 Teachers

Subroutines

Subroutines are sets of instructions designed to perform a frequently used operation within a program.

```
def greeting():
    print("Hello World!")
    print("How are you today?")

greeting()

greeting()
```

Hello World! How are you? Subroutines can store code and will only be run when 'called'.

There are two main types of subroutine: procedures and functions.

Procedures are not required to return a value, whereas functions must return a value.

Subroutines are great ways of writing more maintainable code and leads to more structured, organised and understandable programs.

Creating a subroutine

In line 10 we create the first subroutine which includes the instructions for how to build a pink hexagon. To draw the shape itself a for loop is used to save writing out code unnecessarily

```
8 #Subroutine to build a hexagon
9 #pink hex will only run when called
10 def pinkhex():
      #Everything that is indented counts as being in the subroutine
      #fillcolor makes the colour of the hexagon pink
13
      fillcolor("light pink")
14
      begin fill()
15
      #for loops foor regular shapes
16
      for loop in range(8):
17
           fd(25)
18
           rt(60)
19
      end fill()
      lt(120)
```


Loops

Python & Java 4 Teachers

A loop is a sequence of instructions that is continually repeated until a certain condition is reached.

In Python there are two main loops: 'FOR Loops' and 'WHILE Loops'

While Loops are condition controlled and will repeat until their condition is false.

For loops are count controlled and will repeat a set number of times.

```
condition = True
while condition:
    print("Repeating...")

print("Finish loop?")
finished = input()

if finished == "Y":
    condition = False
```

```
Repeating...
Finish loop?
N
Repeating...
Finish loop?
N
Repeating...
Finish loop?
N
Repeating...
Finish loop?
Y
```

```
1
2 for i in range(5):
3 print(i)
4
5
```

```
0
1
2
3
4
```


{4}

Python & Java 4 Teachers

```
#Subroutine to build a hexagon
#pink hex will only run when called
def pinkhex():
    #Everything that is indented counts as being in the subroutine
#fillcolor makes the colour of the hexagon pink
fillcolor("light pink")
begin_fill()
#for loops foor regular shapes
for loop in range(8):
    fd(25)
    rt(60)
end_fill()
t(120)
```


42 #Main Code 43 pinkhex()

As the program above is part of a subroutine so it needs to be called in the main code.

Creating a second subroutine.

```
21 #Another subroutine for a grey hexagon
22 #This code will only run if called
  def greyhex():
       #This time the fillcolor is grey
24
25
       fillcolor("grey")
      begin fill()
26
       #A regular shape so a for loop can be used
28
       for loop in range (8):
29
           fd(25)
30
           rt(60)
31
       end fill()
32
       lt(120)
```

This code creates another subroutine which creates a grey hexagon. The left turn at the end is needed so that when we call the subroutine in the main code the shapes won't overlap.


```
21 #Another subroutine for a grey hexagon
22 #This code will only run if called
23 def greyhex():
       #This time the fillcolor is grey
25
      fillcolor("grey")
26
      begin fill()
27
       #A regular shape so a for loop can be used
28
       for loop in range(8):
29
          fd(25)
30
          rt(60)
31
      end fill()
32
      lt(120)
```



```
42 #Main Code
43 pinkhex()
44 greyhex()
```

Creating the last subroutine

```
#This subroutine has commands to move the turtle...

#...into the right place so the loops work undisrupted

def movement():

1t(120)

fd(25)

1t(60)

fd(25)

rt(60)
```

This is the last subroutine needed, but instead of drawing a shape it moves the turtle so that when the next instruction is called it is in the right place.

{4}

```
#This subroutine has commands to move the turtle...

#...into the right place so the loops work undisrupted

def movement():

1t(120)

fd(25)

1t(60)

rt(60)
```



```
#Main Code

day

greyhex()

41 pinkhex()

42 #Main Code

This section of the code was only used to show what the subroutines do when called.

IT ISN'T PART OF THE COMPLETE CODE!!!
```

Start of the main code

```
42 #Main Code
43 #for loops are used to create multiple hexagons in a line...
44 #...without writing loads of code.
45 for rowloop in range(4):
      greyhex()
      pinkhex()
48 greyhex()
49 lt(120)
50 for rowloop in range(8):
      pinkhex()
52 lt(120)
53 for rowloop in range(4):
      greyhex()
      pinkhex()
56 #This creates the first triangle of hexagons
57 movement()
58 #movement has moved the turtle so...
59 #... the new line fits inside the old triangle
```

This is the body of the main code. For loops are used to create the triangular shape of hexagons.

Python & Java 4 Teachers

What it will look like...

The main code pt2

```
60 for rowloop in range(3):
       greyhex()
61
      pinkhex()
63 lt (120)
64 for rowloop in range (5):
65
       greyhex()
66 lt (120)
67 for rowloop in range(2):
   pinkhex()
68
      greyhex()
70 pinkhex()
71 #This creates the second triangle which...
72 #... fills in the first one
73 movement()
```

We repeat the previous steps but decrease the numbers within each for loop so it fits inside the first triangle.

{4}

Python & Java 4 Teachers

What will it look like...

The main code pt3

```
for rowloop in range(1):
    greyhex()
    pinkhex()
greyhex()
1t(120)
for rowloop in range(2):
    pinkhex()
1t(120)
for rowloop in range(1):
    greyhex()
pinkhex()
greyhex()
greyhex()
greyhex()
#This is the last triangle which finishes filling in the triangle.
```

This is the last set of for loops that fills in the rest of the triangle.

Python & Java 4 Teachers

What it will look like...

```
for rowloop in range(1):
    greyhex()
    pinkhex()

greyhex()

t(120)

for rowloop in range(2):
    pinkhex()

t(120)

for rowloop in range(1):
    greyhex()

pinkhex()

greyhex()

greyhex()

pinkhex()

#This is the last triangle which finishes filling in the triangle.
```

CHALLENGE:

- ➤ Finish the tessellation by drawing the reflection of the shape so it forms a bowtie shape.
- > Or you can create your own tessellation with different shapes and patterns.

Final Product:

```
#Exercise 1b - Tesselations
                                                                          42 #Main Code
                                                                          43 #for loops are used to create multiple hexagons in a line...
2 #Importing Turtle library
                                                                          44 #...without writing loads of code.
                                                                          45 for rowloop in range (4):
4 from turtle import *
                                                                                greyhex()
5 #Changes the shape of the cursor
                                                                                pinkhex()
6 shape ("turtle")
                                                                          48 greyhex()
7 #Changes the speed of the turtle
                                                                          49 lt (120)
8 delay(0)
                                                                          50 for rowloop in range (8):
9 #Subroutine to build a hexagon
                                                                                pinkhex()
10 #pink hex will only run when called
                                                                          52 lt (120)
11 def pinkhex():
                                                                         53 for rowloop in range (4):
      #Everything that is indented counts as being in the subroutine 54
                                                                                greyhex()
      #fillcolor makes the colour of the hexagon pink
                                                                                pinkhex()
                                                                          56 #This creates the first triangle of hexagons
      fillcolor("light pink")
                                                                          57 movement ()
      begin fill()
                                                                          58 #movement has moved the turtle so...
      #for loops foor regular shapes
                                                                          59 #... the new line fits inside the old triangle
      for loop in range(8):
                                                                          60 for rowloop in range(3):
          fd(25)
                                                                                greyhex()
          rt(60)
                                                                                pinkhex()
      end fill()
                                                                          63 lt (120)
      lt(120)
                                                                          64 for rowloop in range (5):
22 #Another subroutine for a grey hexagon
                                                                                greyhex()
                                                                          66 lt (120)
23 #This code will only run if called
                                                                          67 for rowloop in range (2):
24 def greyhex():
                                                                                pinkhex()
      #This time the fillcolor is grey
                                                                                greyhex()
      fillcolor("grey")
                                                                          70 pinkhex()
      begin fill()
                                                                         71 #This creates the second triangle which...
      #A regular shape so a for loop can be used
                                                                          72 #... fills in the first one
      for loop in range(8):
                                                                         73 movement()
          fd(25)
                                                                         74 for rowloop in range(1):
                                                                                greyhex()
          rt(60)
                                                                                pinkhex()
      end fill()
                                                                          77 greyhex()
      lt(120)
                                                                          78 lt(120)
34 #This subroutine has commands to move the turtle...
                                                                          79 for rowloop in range(2):
35 #...into the right place so the loops work undisrupted
                                                                                pinkhex()
36 def movement():
                                                                         81 lt (120)
      lt(120)
                                                                          82 for rowloop in range(1):
      fd(25)
                                                                                greyhex()
      lt(60)
                                                                                pinkhex()
      fd(25)
                                                                          85 greyhex()
```


Conclusion

This program should:

- √You should have confidently been able to import
 a library into Python,
- √You should be confident in using subroutines to create regular shapes.
- √You should be comfortable using angles to navigate through regular shapes,
- √You should be confident in manipulating the speed and colour within a turtle graphics program.

You have created a tessellation program

